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SHIP-TRACK MODELS BASED ON POISSON DISTRIBUTED  
PORT-DEPARTURE TIMES 

 
 
1. INTRODUCTION 
 

A number of applications require a statistical description of the locations of ships in a region, e.g., 
ambient noise models and probability-based ship tracking algorithms. For many of these applications, it 
suffices to specify the mean number of ships on a grid of elemental longitude-latitude areas. Such 
descriptions, often referred to as shipping distributions, have been obtained from both direct 
measurements of individual ship positions and from shipping models based on port-departure times and 
routing data. A well-known example of the latter is the Historical Temporal Shipping (HITS) model [1,2]. 
This model specifies shipping distributions for different classes of commercial ships and different time 
periods over a large portion of the world's oceans. The resolution of these shipping distributions, i.e., the 
dimensions of the longitude-latitude grid, is 1º × 1º.  
 

Many applications, however, require a description of the tracks of the individual ships over some time 
interval ( , ]o ot t T+  rather than simply the mean number of ships in elemental areas. For some of these 
applications, the duration of the required observation period T  may exceed the time interval over which 
many of the ships are within the region of interest. For these applications, the ship-track model must be 
capable of introducing new ships into the region in a manner consistent with the underlying shipping 
distribution.  
 

The requirements of the ship-track model also depend on the types of ships that are relevant to the 
application. For most commercial shipping, the ships simply transit from one port to another along routes 
that constitute a more or less well-defined shipping lane. For this type of shipping, it may suffice to 
provide simple smooth approximations to the actual routes traveled from the departure to the destination 
port. On the other hand, shipping traffic such as fishing, recreational and military vessels can travel along 
complicated routes as dictated by the specific mission of the vessel. For this type of shipping, more 
complicated descriptions of the routes may be required. In either case, the accuracy requirements of the 
ship tracks will depend on the specific application of the model. 
 

This report presents two models, a deterministic and a stochastic model, each of which describe the 
tracks of ships en route in a region during an arbitrary time interval ( , ]o ot t T+ . Both models consist of a 
track function that describes the tracks of the individual ships and a probability law on the total number of 
ships en route during ( , ]o ot t T+ , the positions of those ships at the initial time ot , and their nominal 
speeds. The probability law is obtained under the assumption that the times at which the ships depart each 
port are Poisson distributed with a time-varying departure rate and that the ship speeds and the routes that 
the ships travel are statistically independent. Under this assumption, it is shown that the ship-track 
parameters are distributed as a Poisson process with a time-dependent rate function. The rate function that 
specifies this process differs for the two ship-track models.  
 

The two ship-track models provide alternate descriptions of the ship’s tracks. In the deterministic 
model, the ship tracks are deterministic functions derived from a probability density on ship positions in 
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manner analogous to that of the HITS model (see Ref. 2). As such, the individual ship tracks can neither 
double back on themselves nor intersect any other ship tracks. This may be an acceptable constraint for 
ship traffic that simply transits from one port to another, provided that detailed representations of the 
individual tracks are not required. In the stochastic model, the ship tracks are obtained as realizations of a 
Markov process without any constraints on the route crossings. Accordingly, this model is suitable for 
shipping where the tracks are determined by operations more complicated than port-to-port transiting. 
Furthermore, the stochastic nature of the tracks may be more realistic than the smooth track 
approximations of the deterministic model. 
 

This report is organized as follows: Sections 2 and 3 provide the background for the model 
definitions. In Section 2, we present the definitions and assumptions that are used to describe the 
kinematics of the shipping for each ordered pair of ports that support shipping in the region. Specifically, 
for each port pair, we define the ship-track function in terms of a route function and a motion function. In 
general, these functions depend on a track parameter that specifies the distance that the ship has traveled 
at the initial time ot , the specific route that the ship travels between the departure and the destination port 
and the ships nominal speed along that route. To account for those ships that are not en route at time ot , 
but depart the port during the interval ( , ]o ot t T+ , we allow these parameters to take on “virtual” values. 
In Section 3, we state the assumptions on the port-departure probability law and describe the probability 
law on the track parameter that results from these assumptions. It is seen that the track-parameter 
probability law can be viewed as the composition of two Poisson process, one representing the ships that 
are present at time ot  and one representing the ships that enter the region in the interval ( , ]o ot t T+ . 
 

The ship-track models themselves are described in Sections 4 and 5. For each of these models, we 
first specify the route set probability law that forms the basis of the model. We then specify the track 
function and the track-parameter probability law that results from the route set probability law. For both 
models, the track parameter can be expressed in terms of the ship position at the initial time ot  and the 
nominal speed. This leads to the notion of the shipping density from which the shipping distribution can 
be derived by integrating over elemental areas. The derivations of these results are presented in 
Appendixes A and B. For reference purposes we have also provided a definition of a multi-dimensional 
Poisson process in Appendix A. In Appendix C, we present a simplified version of the deterministic 
model. Finally, the results of the report are summarized in Section 6. An example of an ambient noise 
model that draws on a deterministic ship-track model is described in Refs. 3 and 4. Reference 5 presents 
an ambient noise application to the region around San Diego, California. 
 
2. KINEMATICS 
 

A realization of ship tracks must represent not only those ships that are present in the region during 
the entire time interval of interest, but also those ships that either enter the region or exit the region during 
that interval. The latter do so by either departing or arriving at a port or by crossing the boundary of the 
region. Figure 1 illustrates this process. The region of interest is bounded by the coastline segments 
indicated by the heavy black lines and by the dotted line segments across the access areas to the region. 
The ports, labeled 1P  through 9P , are classified as either “real ports” or “pseudo ports.” The real ports are 
those that are physically located within the region. The pseudo-ports, located along the access boundaries 
of the region, represent the shipping from the aggregate of the ports located outside the region that 
provide traffic to the region. The ports 6P  and 9P  are pseudo ports; the remaining ports are real ports. 
The ship tracks are indicated by the line segments. The dots on the segments show the ship positions at 
time ot ; the arrowheads show the positions at time ot T+ . The ship tracks fall into two groups, ships that 
are en route at time ot  and ships that are in port at time ot  but depart the port during the interval 
( , ]o ot t T+ . Ship tracks in the first group have a dot at the beginning of the track; ship tracks in the 
second group do not have a dot at the beginning of the track. For tracks in the first group, there are a 
number of possibilities: (a) the ship remains en route for the entire time interval (indicated by a track with 
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both a dot and an arrowhead); (b) the ship arrives at a port during the time interval and remains there for 
the rest of the time interval (indicated by a track with a dot but no arrowhead); (c) the ship arrives at a 
port and then departs from that port during the time interval (indicated by the dashed track at 2P ); and (d) 
the ship arrives at and then departs from more than one port during the interval. The same possibilities 
exist for the ships that are at a port at the beginning of the time interval once those ships have departed the 
port. 
 

P1

P2

P3

P4

P5

P6
P7

P8

P9

 
 

Fig. 1 — A possible set of ship tracks for a region 
 

The ship-track model presented here does not describe the tracks of ships that pass through a port 
during the time interval of interest. Instead, it represents such tracks as two tracks — one associated with 
a ship that arrives at the port and remains there for the rest of the time interval and one associated with a 
ship that is at the port at the beginning of the interval and then departs at some time during the interval. 
Thus, the track of the ship passing through 2P  in Fig. 1 is represented as the track of one ship that enters 

2P  plus the track of another ship that departs from 2P . This approximation simplifies the model 
considerably since it obviates the need to relate a ship’s departure time to its arrival time. Furthermore, it 
allows the shipping between any pair of ports to be considered separately from the shipping between any 
other pair of ports. This approximation is reasonable if the duration of the time interval is short compared 
to the mean time that ships spend in a port since, in this case, the number of tracks that pass through the 
port in the time interval will be negligible. It is also be reasonable for longer time intervals if it is not 
necessary to preserve the identity of the individual ships that pass through the ports. 
 

As a result of the independent port-pair approximation, the regional shipping model can be obtained 
as the composition of ship-track models for each ordered pair of ports ( , )n mP P  that support shipping 
within the region. The first port in the port-pair is the departure port; the last port is the destination port. 
We also include the port-pair ( , )n nP P  since for certain kinds of shipping (e.g., fishing and recreational) 
the destination port and the departure port can be the same. Furthermore, we include both the port-pairs 
( , )n mP P  and ( , )m nP P , since the traffic from nP  to mP  is not necessarily the same as the traffic from mP  
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to nP . Thus, if there are pN  ports for the region, including pseudo ports, there are as many as 2
pN  port-

pair models for the regional model.  
 

To describe the kinematics for an individual port pair, it is first necessary to specify the routes that the 
ships travel and the motion of those ships along those routes. These quantities determine a ship-track 
function that specifies the tracks of the individual ships during the period of interest. 
 
2.1 The Route Function 
 

The routes that the ships travel are specified by a route function that describes the set of all possible 
routes from nP  to mP  by associating each possible route with a route parameter ω∈Ω  and expressing 
that route as a function of the distance x measured along that route from the departure port. The route 
function has the form 

 ( ) ( ) ( )( ), ; ; , ;R x R x R xλ φ λ φω = ω ω  , (1) 

where ( ; )R xλ ω  and ( ; )R xφ ω  are the coordinate functions for the longitude coordinate λ  and the latitude 
coordinate φ , respectively. For each value of the route parameter ω , we denote the length of the route by 

( )L ω  and assume that as x increases from 0 to ( )L ω , the route function traces out the route ω  from nP  
to mP  as a continuous path in the set ( , ]λ ∈ −π π  and ( / 2, / 2)φ∈ −π π . This set represents all positions on 
the Earth, except for the north and the south poles, with the convention that negative values of λ  
correspond to longitudes east of the Greenwich meridian and negative values of φ  correspond to latitudes 
south of the equator. 
 

To account for ships that depart from nP  after time ot , we allow the distance traveled x to be 
negative and define the route function by  

 
( )
( )

;

;

R x

R x
λ

φ

ω = λ − π

ω = φ = ω
  (2) 

With this definition, route segments determined for negative values of x do not describe actual routes 
since the coordinates ( , )λ φ  take values in the set ( , )vℜ = −∞ −π × Ω . We refer to this set as the virtual 
ship coordinates and use it to implicitly determine the departure times of the ships that leave nP  during 
the time interval ( , ]o ot t T+ . We refer to the set ( , ] ( / 2, / 2)rℜ = −π π × −π π  as the real ship coordinates 
and to the union of both sets e v rℜ = ℜ ∪ ℜ  as the extended ship coordinates. 
 

In the sequel, it is convenient to define the route function and the track function in an auxiliary 
coordinate system and then map the results to the latitude-longitude system. The definition of the 
auxiliary coordinates, which are denoted here by ( , )θ γ , is illustrated in Fig. 2. In this definition, it is 
assumed that the route set is such that there is a “nominal route” nω  with the property that, for each point 
( , )′ ′λ φ  on nω , there is a great circle arc through that point that is orthogonal to the nominal route and 
that intersects every other route in the route set. The auxiliary coordinate θ  is defined as the distance 
along the nominal route from the departure port to the point ( , )′ ′λ φ . This distance increases from zero at 
the departure port to nL  at the destination port, where nL  is the length of the nominal route expressed in 
radians. The “cross-sectional coordinate” γ  is defined as the signed distance along the great circle arc 
from the point ( , )′ ′λ φ  on the nominal route nω  to the point ( , )′′ ′′λ φ . This distance is taken to be positive 
in the direction of the upper route envelope, denoted by ( )ue θ  in Fig. 2, and negative in the direction of 
the lower route envelope ( )le θ . For route segments that lie in the virtual coordinate set, 
( , ) ( , )vλ φ ∈ℜ = −∞ −π × Ω , we take θ = λ + π  and γ  equal to a function of φ  that is specified below. 
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Fig. 2 — The auxiliary coordinate system 
 

 
With the auxiliary coordinate system so defined, the longitude-latitude coordinates are related to the 

auxiliary coordinates by a one-to-one transformation. Consequently, the route function , ( ; )R xλ φ ω  can be 
obtained by first determining this function in terms of the auxiliary coordinates (i.e., as the function 

, ( ; )R xθ γ ω ) and then using the coordinate transformation to express the results in the longitude-latitude 
coordinate system. Reference 5 provides an example of a one-to-one transformation between the auxiliary 
coordinates and the longitude-latitude coordinates for a particular choice of the nominal route. 
 

In the deterministic model presented in Section 4, all of the routes in the route set “progress” from the 
departure port to the destination port without “doubling back” on themselves. For this case, there can be 
only one value of the cross-sectional coordinate γ  for each value of the nominal route coordinate θ . 
Consequently, for each route ω , the cross-sectional variable can be expressed as a function ( , )aγ = θ ω , 
so that the route ω  is traced out as the points ( , ( , ))aθ θ ω  as θ  increases from zero to nL . Furthermore, 
the distance traveled along the route is given by 

 ( ) ( )
1/ 22

0

,
; 1

a
X d

∞ ⎡ ⎤′⎛ ∂ θ ω ⎞⎢ ⎥ ′θ ω = + θ⎜ ⎟′⎢ ⎥∂θ⎝ ⎠⎣ ⎦
∫  , (3) 

which is an increasing function of the nominal route coordinate θ . It follows that θ  can be expressed as a 
function of the distance traveled by the inverse function  

 ( ) ( )1; ;x X x−Θ ω = ω  . (4) 

With these definitions, the route function for progressive route sets is given by 

 
( ) ( ) ( )
( ) ( )( )

1; ; ;

; ; ,

R x x X x

R x a x

−
θ

γ

ω = Θ ω = ω

ω = Θ ω ω
 . (5) 
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2.2 The Ship-Motion Function  
 
The ship-motion function describes the distance traveled by a ship along a route as a function of the 

elapsed time after its departure from the port. Since this motion depends on the nominal speed that the 
ship travels and possibly on the specific route that the ship follows, we include these quantities as 
parameters of the ship-motion function. Furthermore, we also allow the ship-motion function to depend 
on absolute time to account for environmental effects (e.g., storms). With these conventions, the distance 
traveled from the departure port at time t by a ship that departs at time τ  and then travels the route ω  
with nominal speed v  is represented by ˆ ( ; , , )x M t t v= − τ ω . As defined, the ship-motion function takes 
on distance values in the interval [0, ( )]L ω  as t varies from the departure time τ  to the arrival time at the 
destination port η . As with the route function, it is convenient to allow the distance traveled to take on 
“virtual” values by extending the definition of the ship-motion function to the whole time axis. To this 
end, we assume constant speed motion for [ , ]t ∉ τ η  and define an extended ship-motion function by 

 ( )
( )

( ) [ ]
( ) ( )

for t<
ˆ ˆ; , , ; , , for t ,

for t>
x

v t

M t t v M t t v
v t L

⎧ − τ τ
⎪

− τ ω = − τ ω ∈ τ η⎨
⎪ − τ + ω τ⎩

 . (6) 

With this definition, the extended motion function ˆ ( ; , , )xM t t v− τ ω  is a monotonically increasing 
function of elapsed time tς = − τ . It follows that given any initial time ot , there is a unique initial 
distance ox  obtained by setting o otς = ς = − τ  in Eq. (5). Furthermore, given an initial distance ox , there 
is a unique value of the initial elapsed time  

 ( ) ( )1ˆ, , ; ; , ,o o o o x o ox v t t M x t v−ς ω = − τ = ω , (7) 

corresponding to ox . Consequently, it is always possible to express the distance traveled as a function of 
the initial time ot  and the initial distance ox . To this end, we redefine the ship-motion function by  

 ( ) ( )( )ˆ; , , , , ; ; , ,o o x o o o oM t t x v M t t x v t t v− ω = − + ς ω ω  . (8) 

 
Figure 3 shows an example of these definitions. In this figure, we have illustrated the ship-motion 

function for two ships, each of which travels the same route ω  with the same nominal velocity v . The 
first ship departs at time 1τ  and arrives at time 1η ; the second departs at time 2τ  and arrives at time 2η . 
During the period when the second ship is in transit, a local storm causes it to reduce speed with the result 
that its total transit time 2 2η − τ  is longer than the transit time for the first ship. Both ships are present 
during the observation interval [ , ]o ot t T+ . The first ship is en route at the initial time ot  since 

1 1( , )ot ∈ τ η . This ship has an elapsed time ( , ; , ) 0o ox t vς ω ≥  and a “real” initial distance [0, ( )]ox L∈ ω . 
The second ship in not en route at the initial time since 2 2( , )ot ∉ τ η . However, it is en route during the 
observation interval since 2 2( , )ot T+ ∈ τ η . This ship has an elapsed time ( , ; , ) 0o ox t vς ω <  and a 
negative initial distance [ ,0]ox vT∈ . The first ship arrives at the destination port in the observation 
interval; the second ship does not. 
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Fig. 3 — The ship-motion function 
 

Note that in this example, the nominal speed parameter specifies a “characteristic” speed of the ship 
rather than the actual speed made good. Other attributes of the ship relevant to a particular application of 
the model (e.g., type of ship) can be included in the model by interpreting v  as a vector parameter in the 
subsequent development. Also note that the definition of the motion function does not preclude the 
second ship from overtaking and passing the first ship. Strictly speaking, with the route function defined 
by Eq. (1), this would amount to the second ship “passing through” the first ship if both ships were 
traveling on the same route. However, with the specific route functions considered in this report, this is an 
event of zero probability and is not considered further. 
 
2.3 The Ship-Track Function 
 

The ship-track function ,Gλ φ  is obtained from the route function ,Rλ φ  by using the ship-motion 
function M  to express the distance traveled by a ship as a function of the elapsed time and the ship 
parameter. It follows from Eqs. (1) and (7) that the longitude coordinate function Gλ  and the latitude 
coordinate function Gφ  of the ship-track function have the form  

 
( ) ( )( )
( ) ( )( )

; , , ; , , ;

; , , ; , , ;
o o o o

o o o o

G t t x v R M t t x v

G t t x v R M t t x v
λ λ

φ φ

− ω = − ω ω

− ω = − ω ω
 . (9) 

Note that only the route parameter component of the track parameter ( ), ,ox vω  is needed to identify the 
particular route, whereas the complete track parameter is needed to specify the motion along that route. 
 

A ship-track realization is obtained by specifying the number of ship tracks in the realization n  and 
the track parameters for those ships {( , , ); 1,..., }ko k kx v k nω =  and then computing the track of each ship 
using the track function. An example of a ship track realization is shown in Fig. 4. The routes that the 
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ships travel are shown by the thin curves. The tracks of the ships along those routes for the time interval 
[ , ]o ot t T+  are indicated by the heavy lines on these curves. For the tracks along the routes 1ω  and 4ω , 
the ships are en route during the whole time interval [ , ]o ot t T+ . For the track along the route 3ω , the 
ship is en route at time ot  but it arrives at the destination port prior to ot T+ . Thus, for these three tracks, 
the initial-distances are positive and the initial positions, indicated by large dots, lie in the set of real ship 
coordinates. For the track along the route 2ω , the ship departs from nP  after time ot . Therefore, the initial 
distance for this track 2ox  is negative and the initial position lies in the set of virtual ship coordinates. At 
time ot , the ship starts at the initial distance 2ox  and moves along the route segment in the virtual ship 
coordinates with constant speed 2v  up to the departure time 22 2/o ot x vτ = − . At this time, it actually 
departs the port and travels along the route segment shown with its motion determined by 

2 2 2( ; , , , )o oM t t t x v− ω .  
 

Pn

Pm

ω1

ω2

ω3

ω4

VIRTUAL ROUTE
SEGMENT

 
 

Fig. 4 — Example of a ship track realization for a single port-pair 
 

To determine individual track realizations, it is necessary to have a mechanism for determining the 
track parameters for each realization. This is done in terms of the port parameter probability law defined 
in the following section.  
 
3. THE PORT-DEPARTURE AND TRACK-PARAMETER PROBABILITY LAWS 
 

To an observer located at the departure port, the shipping is described by the sequence of parameters 
{( , , )}k k kvτ ω , where kτ  is the departure time of the kth ship to leave the port, kτ  is its route parameter, 
and kv  is its nominal speed. In this report, we assume that: (1) the ship departure times are described by a 
Poisson process with a time-dependent rate function ( )tτμ  that represents the mean number of ship 
departures per unit time; (2) the route that each ship travels and its speed are independent of its departure 
time and independent of one another; (3) different ships select routes independently of one another and 
each ship selects its route from the same probability density ( )pω ω ; and (4) the nominal speeds of all 
ships are independent of one another and are described by the same probability density ( )vp v . The rate 
function ( )tτμ  can be estimated from ship departure data; the ship speed density ( )vp v  can be 
determined from the ships’ register data given the identities of the departing ships. However, in general, 
the route parameter probability density ( )pω ω  cannot be determined independently of the probability law 
describing the route set. 
 

According to the Poisson departure time assumption, the number of ships leaving the port during the 
time interval ( , ]o ot t T+  is a Poisson random variable Nτ  with a probability mass function given by 
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 [ ] ( ){ } ( ),
Pr exp ,

!

n
o

o
M t T

N n M t T
n

τ
τ τ= = − , (10) 

where  
 

 ( ) ( ), o

o

t T
o t

M t T t dt
+

τ τ= μ∫  (11) 

 
is the mean number of ships to leave the port in the interval. Furthermore, given that there are n ship 
departures during the interval, the ship departure times { ; 1,..., }k k nτ =  are independent and identically 
distributed with common probability density. 
 

 ( ) ( ) ( ) [ ]1, for ,; ,
0 otherwise

k o k o ok o
M t T t t Tp t T

−
τ τ

τ
⎧⎪μ τ τ ∈ +τ = ⎨
⎪⎩

 . (12) 

 
Note that since the departure rate ( )tτμ  depends on time, the mean number of ships ( , )oM t Tτ , the 
departure-time probability density ( ; , )k op t Tτ τ , and the probability mass function depend on the choice 
of the time interval [ , ]o ot t T+ . We allow for this time dependence to incorporate variations in the number 
of ship departures with time of day, day of the week, etc. For homogeneous Poisson processes, the 
departure rate is independent of time ( ( )tτ τμ = μ ); hence, the mean number of ship departures is simply 
T τμ  and the departure times are uniformly distributed on the interval [ , ]o ot t T+  (i.e., 1( )kp T −

τ τ = ). 
 

It follows from the port-departure assumptions that the port-departure parameter ( , , )vτ ω  is described 
by a multidimensional Poisson process that is specified by a rate function , , ( , , )v t vτ ωμ ω . Moreover, from 
the definitions of Section 2, there is a one-to-one transformation between the port-departure parameter 
( , , )vτ ω  and the ship-track parameter ( , , )ox vω . It follows that the ship-track parameter is also distributed 
as a multi-dimensional Poisson process that is specified by a rate function , , ( , , ; , )ox v o ox v t Tωμ ω . The 
specification and derivation of these rate functions is presented in Appendix B (see Eqs. (B1), (B4), and 
(B5)). The definition of a multidimensional Poisson process is presented in Appendix A. 
 

The Poisson process on the ship-track parameters describes the number and the distribution of the 
parameters for all ships present in the region during the interval [ , ]o ot t T+ . As seen in Section 2, the 
ships present in the region during this interval are those that are en route at time ot  and those that depart 
during the half open interval ( , ]o ot t T+ . The former have positive initial distances; the latter have 
negative initial distances. Consequently, by restricting the track-parameter rate function 

, , ( , , ; , )ox v o ox v t Tωμ ω  to positive values of ox , we obtain a Poisson process that describes the ships that 
are en route at time ot . Similarly, by restricting , , ( , , ; , )ox v o ox v t Tωμ ω  to negative values of ox , we obtain 
a process describing the ships that depart during ( , ]o ot t T+ . The total number of ships en route during 
[ , ]o ot t T+  is the Poisson process obtained as the composition of the two component processes. For each 
of these processes, the number of ships is a Poisson random variable with a probability mass function 
given by Eq. (10) and the track parameter for those ship are independent and identically distributed with a 
probability density given by an equation analogous to Eq. (12). The mean number of ships is obtained as 
an integral of ( ), , , , ; ,ox v o ox v t Tωμ ω  over the appropriate volume. The definition of these processes and 
explicit formulas for the relevant quantities are presented in the following sections. 
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The track-parameter rate function , , ( , , ; , )ox v o ox v t Tωμ ω  completes the model if the route set 
probability density ( )pω ω  and the route function of Eq. (1) are known. In a simple approximate model, 
where the traffic is described in terms of, at most, a finite number of routes, the route function might be 
described analytically in terms of great circle route segments and the weightings ( )pω ω  might also be 
available. However, in the more realistic case, where there is a continuum of routes, the route function 
and the route parameter density must be determined from data on the routes that the ships follow. In 
principle, these data can be used to construct a probability law on the ensemble of routes from nP  and 

mP . In general, such a probability law consists of the joint probability density on the coordinate positions 
1 1{( ( ), ( )),..., ( ( ), ( ))}n nx x x xλ φ λ φ  for all possible samples of the distances traveled 1{ ... ; 0}nx x n< < > . 

To determine such a probability law requires more data than are usually available. Consequently, it is 
necessary to introduce approximations and assumptions that allow the route functions to be defined in 
terms of simplified probabilistic descriptions.  
 

In the following section, we describe a “deterministic” model where the route functions are 
determined from a probability density that can be estimated from any sample of ship coordinates, 
regardless of whether those coordinates are organized into specific routes. In Section 5 we describe a 
“stochastic” model which assumes that the ship routes are described by a Markov process. 
 
4. A DETERMINISTIC ROUTE FUNCTION MODEL 
 

In the ship-track model presented here, both the route function and the route parameter density are 
determined from a probability density on the cross-sectional ship positions γ  conditioned on the nominal 
route coordinate positions θ . This is done in such a way that each route is uniquely determined by any 
point on that route. As a consequence, the Poisson process describing the distribution of ship-track 
parameters can be expressed in terms of the initial coordinates of the ship at time ot , rather than the initial 
distance and the route parameter. This simplicity is obtained by limiting the route structure to progressive 
route sets with the additional constraint that the individual routes can not intersect one another. To 
describe the model, we first define the underlying probability densities. We then specify the route and the 
track functions that are determined by these densities. Finally, we present the probability law on the track 
parameter which results from these definitions and the assumptions of Section 3. 
 
4.1 The Route Coordinate Probability Density 

 
The route coordinate probability density describes the concentration of the γ  values of the routes as 

they intersect the cut in the route set at θ . We denote this probability density by ( )| ;pγ θ γ θ , where θ  
specifies the location of the cut, and refer to the corresponding cumulative probability distribution 

 

 ( ) ( )
( )

| |; ;
l

P p d
γ

γ θ γ θ
ε θ

′ ′γ θ = γ θ γ∫  (13) 

 
as the route coordinate distribution function. Figure 5 shows an example of a route coordinate density and 
distribution function for a specific cut in the route set. In this example, the routes for the cut oθ = θ , are 
concentrated near the lower envelope ( )l oe θ . The route coordinate density at other cuts in the route set 
need not be the same as the one shown. For example, the distribution of routes shown in the figure 
suggests that the route coordinate density for the cut at 1θ = θ  would reflect a more disburse 
concentration of the routes closer to the center of the route envelopes. A method for estimating these 
densities from ship route data can be found in Ref. 2 along with a number of examples. 
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Fig. 5 — Example of a route coordinate probability density 
 

It is important to emphasize that the route coordinate densities, in themselves, do not specify the 
routes that the ships travel since many different possible route functions can satisfy a given route 
coordinate density.  
 
4.2 The Route Function 

 
For progressive routes, the route sets are specified by the cross-sectional function ( , )a θ ω  and the 

route parameter probability density ( )pω ω . For the deterministic model, we define these quantities in such 
a way that the resulting set of routes is consistent with the route coordinate distribution function | ( ; )Pγ θ γ θ . 
To this end, we restrict ω  to the interval [ ]0,1  and define the cross-sectional function ( , )a θ ω  as the 
inverse of the route coordinate distribution. Specifically, for each [0,1]ω∈ , ( , )a θ ω  is the function 
satisfying 

 ( )( )| , ;P aγ θ θ ω θ = ω  . (14) 

Clearly, ( , )a θ ω  is well defined since for each value of θ , | ( ; )Pγ θ γ θ  is an increasing function of γ  
taking values in the interval [ ]0,1 ; hence, for fixed θ , there is an inverse function 1

|P−
γ θ  that maps 

[ ]0,1ω∈  to the set of all possible cross-sectional coordinate values γ . For a fixed ω , the γ  value 
corresponding to the θ  value on the route ω  is the value given by this inverse function. For notational 
convenience, we write 

 ( ) ( )1
|, ; for  0a P−

γ θθ ω = ω θ θ >  . (15) 

Figure 6 illustrates the definition of the cross-sectional function. As seen in the figure, the two route 
envelopes are also routes in the route set. The lower route envelope ( )le θ  corresponds to the route 
parameter 0ω = ; the upper route envelope ( )ue θ  corresponds to 1ω = . For fixed θ , the cross-sectional  
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function ( , )a θ ω  yields γ  values that increase over the interval [ ( ), ( )]l ue eθ θ  as ω  increases over the 
interval [ ]0,1 . For a fixed value of ω , ( , )a θ ω  traces out the γ  values along the route ω  as θ  increase 
from 0 to nL . Note that the routes are defined so that no two can intersect one another. (If they could, Eq. 
(13) would not be well-defined.) Also note that since the lower route envelope and the upper route 
envelope are assumed to be distinct, the interval [ ( ), ( )]l ue eθ θ  cannot degenerate to a single point even at 
the departure port 0θ =  or at the destination port Lθ = . 

 
 

 

Pn

Pm
(θο,γο)

θ

cross-sectional
cut at  θ ο

lower route
envelope, e l(θ)

upper route
envelope, e u ( θ)

nominal route

ωο

γ

route distribution
function, P γ  |  θ (γ ; θο)

route
( θ , a ( θ ; ωο) )

 
 

Fig. 6 — Definition of the cross-sectional route function and the route parameter 
 
 

Equation (15) describes the segments of the routes that lie between the departure port and the 
destination port. These route segments lie in the set of real ship coordinates [0, ] [ ( ), ( )]r l uL e eℜ = × θ θ . 
For the route segments that describe the fictitious motion of the ships before they leave the port, we take 

( , )a θ ω  to be the inverse route distribution function evaluated at the departure port (i.e., 
1

|( , ) ( ; 0)a P−
γ θθ ω = ω θ = ) for 0θ < . These route segments lie in the set of virtual ship coordinates 

( ,0) [ (0), (0)]v l ue eℜ = −∞ ×  and have γ  coordinates that are independent of θ . 
 

The definition of the cross-sectional function suffices to specify the route function , ( ; )R xθ γ ω . The θ  
coordinate of , ( ; )R xθ γ ω  is 1( ; ) ( ; )ox X x−Θ ω = ω , where the distance traveled function ( ; )X θ ω  is 
determined from ( , )a θ ω  by Eq. (3). The γ  coordinate of , ( ; )R xθ γ ω  is ( ( ; ), )a xΘ ω ω . The track function 

, ( ; , , )o oG t t x vθ γ − ω  is obtained from the route function using the motion function ( ; , , )o oM t t x v− ω  to 
express the distance traveled as a function of time.  
 

An important consequence of the definition of the cross-sectional function is that there is a one-to-one 
transformation between the track parameter components ( , )ox ω  and the initial coordinates ( , )o oθ γ . In 
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particular, the initial coordinates are determined by ( ; )o oxθ = Θ ω  and ( ( ; ); )o oa xγ = Θ ω ω . The initial 
distance and the route parameter are determined by 

  

 ( ) ( )|; ;o o oP Pγ θω = γ θ = γ θ  (16) 

and  

 ( )
( )

1/ 221
|

0

;
, 1

o

o o o o
P

x X d
θ −

γ θ
⎡ ⎤⎛ ⎞′∂ ω θ⎢ ⎥⎜ ⎟ ′= θ γ = + θ⎢ ⎥′⎜ ⎟∂θ⎝ ⎠⎢ ⎥⎣ ⎦

∫  . (17) 

 
Equation (16) follows immediately from Eq. (14) by replacing ( , )a θ ω  by oγ . Equation (17) follows 

from Eq. (3) by setting oθ = θ  and by substituting for ω  from Eq. (15). Note that by virtue of Eqs. (16) 
and (17), the route function can be expressed in terms of the initial position and the motion function and 
the track function can be expressed in terms of the initial position and the characteristic speed. 
Consequently, the ship track realizations can be obtained from the track function by specifying the track 
parameter sets {( , , ); 1,..., }k ko o kv k nθ γ = . The interpretation of a ship track realization is the same as that 

of Fig. 3 with ox  and ω  replaced by oθ  and oγ  (i.e., the initial positions (the dots) are the points 
( , )o oθ γ  and the route parameter in the ship-motion function is determined from these points by Eq. 
(16)). The probability law on the track parameters is described in the following subsection. 
 

To conclude these definitions, we show that the cross-sectional function is consistent with the route 
coordinate distribution function if the route parameter is uniformly distributed. To see this, we note 
that | ( ; ) Prob{ [ ( ), ]} Prob{ [ ( ), ( ; )]}l lP e e aγ θ ′ ′γ θ = γ ∈ θ γ = γ ∈ θ θ ω . But [ ( ), ( ; )]le a′γ ∈ θ θ ω  is equivalent 
to [0, ( ; )]Pγ θ′ω ∈ γ θ , so that Prob{ [ ( ), ( ; )]} Prob{ [0, ( ; )]}le a Pγ θ′γ ∈ θ θ ω = ω∈ γ θ , which is the same as the 

cumulative distribution of the route parameter evaluated at ( ; )Pγ θω = γ θ . Thus, | |( ; ) ( ( ; ))P P Pγ θ ω γ θγ θ = γ θ , 

where ( )Pω ω  is the route parameter cumulative distribution function determined from the route 
parameter probability density ( )pω ω . This equality holds if and only if the route parameter is uniformly 
distributed on [ ]0,1 , in which case ( )Pω ω = ω . 
 
4.3 The Track-Parameter Process 
 

The ship-track probability law describes the number and the distribution of the parameters of all the 
ships present in the region during the interval [ , ]o ot t T+ . For the deterministic model, this probability 
law is obtained from the probability law of Section 3 through an invertible transformation that maps the 
parameter ( , , )ox vω  to the parameter ( , , )o o vθ γ . It is shown in Appendix B that this results in a Poisson 
process with a rate function , , ( , , ; , )v o o ov t Tθ γμ θ γ  defined on the extended route set e v rℜ = ℜ ∪ ℜ . As 
noted in Section 3, this process can be represented as the composition of two Poisson processes, one that 
describes the ships that are en route at time ot  and one that describes the ships that depart during 
( , ]o ot t T+ . We refer to the former as the “en route” process and to the later as the “entry” process.  
 

To define these processes, it suffices to specify their rate functions. The number of ships and the 
probability density on the parameters for those ships are then given by Eqs. (10) and (12), where the mean 
number of ships is obtained as an integral over the rate function. To compute this integral, it is convenient  
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to define a shipping density , ( , ; )o o otθ γμ θ γ  as the integral of the rate function with respect to ship speed. 
The mean number of ships is then obtained as the integral of the shipping density with respect to the ship 
coordinates. The shipping distribution is the integral of the shipping density over element areas. The 
specific equations are as follows. The derivations of these equations are presented in Appendix B. 
 

For the en route process, the only ships that are en route at time ot  are those that have real ship 
coordinates. Consequently, the rate function is obtained by restricting , , ( , , ; , )v o o ov t Tθ γμ θ γ  to the real 
ship coordinates [0, ] [ ( ), ( )]r l uL e eℜ = × θ θ . The rate function is given by 

 

 

( )

( )( ) ( )
( )

( )

( ) ( ) ( )

, ,

|
,

,

, , ;

, , ; ,
, , ; ;

o o o o

o o

v o o o

o o o o o o
o o o o o o v

x Xo o
P o

v t

x v t X
t x v t p p v

x

θ γ

τ γ θ
= θ γ

ω= γ θ

μ θ γ =

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎡ ⎤∂ς ω ∂ θ γ
⎢ ⎥μ − ς ω γ θ⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂θ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦
⎢ ⎥⎣ ⎦

 . (18) 

 
As noted above, the shipping density for the ships that are en route at time ot , , ( , ; )o o otθ γμ θ γ  is the 

integral of the rate function with respect to ship speed;  

 ( ) ( ) ( ), , ,
0

, ; , , ; ; ,o o o v o o o o o rt v t dv
∞

θ γ θ γμ θ γ = μ θ γ θ γ ∈ℜ∫ . (19) 

The mean number of ships with initial coordinates ( , )′ ′λ φ  in any set r rC ⊆ ℜ  is the integral of the 
shipping density with respect to the ship coordinates over the set rC ; 

 ( ) ( ),; , ;
r

r o r oC
M t C t d dθ γ ′ ′ ′ ′= μ θ γ θ γ∫  . (20) 

It follows from the definition of a Poisson process, that the number of ships en route at time ot  with 
coordinates ( , )o o r rCθ γ ∈ ⊆ ℜ , ( ; )r o rN t C , is a Poisson random variable with a probability mass 
function given by Eq. (10) with Mτ  replaced by ( ; )r o rM t C . Furthermore, the track parameters for those 
ships are independent and identically distributed with the common probability density function 

 ( ) ( ) ( ) ( )_1
, ,, , ; ; , , ; ; ,r o o o r v o o o r o r o o rp v t C v t M t Cθ γθ γ = μ θ γ θ γ ∈ℜ  . (21) 

The total number of ships en route at time ot  is determined from these equations by taking r rC = ℜ .  
 

An interpretation of these equations is as follows.  The first factor in Eq. (18) describes the mean 
number of ships per-unit distance along the route determined by ( , )o oθ γ . This factor incorporates the 
temporal variations in the rate at which ships depart the port through the time dependence on the ship 
departure rate ( )tτμ  and the motion of the ships along the route through its dependence on the departure 
time function ( , , ; )o o ox v tς ω , and its first derivative. For the special case of constant speed motion, 

1( , , ; )o o o ox v t x vς ω −= , this factor simplifies to 1 1( ( , ) )o o o ot X v v− −
τμ − θ γ .  Thus, for constant speed 

motion, a change in the rate at which ships depart the port simply propagates along the route with the 
nominal ship speed.  
 

The second factor in Eq. (18) describes how the ships are distributed across the routes. This factor is 
equal to the route coordinate density weighted by the magnitude of a derivative that represents the rate of 
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change in the distance traveled with respect to the nominal route distance. For most route sets, the routes 
do not depart significantly from the nominal route so that this derivative is approximately unity and 
hence, the second factor is approximately equal to the route coordinate density. For these “narrow” route 
sets and for constant speed motion, the track-parameter rate function simplifies to  

 ( ) ( )( ) ( ) ( ) ( )1 1
, , |, , ; , ; ; ,v o o o o o o o o o v o o rv t t X v p v p v− −

θ γ τ γ θμ θ γ = μ − θ γ γ θ θ γ ∈ℜ , (22) 

and the shipping density becomes 

 ( ) ( ) ( )( ) ( ) ( )1 1
, |

0
, ; ; , ; ,o o o o o o o o o v o o rt p t X v v p v dv

∞
− −

θ γ γ θ τμ θ γ = γ θ μ − θ γ θ γ ∈ℜ∫  . (23) 

Note that if in addition the departure rate is independent of time, ( )τ τμ τ = μ , then the rate 
function is 1

, , ( , , ; , ) ( ; ) ( )v o o o o o vv t T p v p v−
θ γ τ γ θμ θ γ = μ γ θ  and the shipping density is , ( , ; )o o otθ γμ θ γ =  

( ; )o opτ γ θμ β γ θ , where β  is the mean value of the reciprocal speed, 1[ ]E v−β = .  
 

For the entry process, the only ships that depart in the interval ( , ]o ot t T+  are those that have virtual 
ship coordinates. Consequently, the rate function for the entry process is obtained by restricting 

, , ( , , ; , )v o o ov t Tθ γμ θ γ  to the virtual ship coordinates ( ) [ ,0] [ ( 0), ( 0)]v l uT vT e eℜ = − × θ = θ = . The rate 
function is given by 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
, , |, , ; , ; 0 ; ,v o o o o o o o v o o vv t T t v p v p v T− −

θ γ τ γ θμ θ γ = μ − θ γ θ = θ γ ∈ℜ , (24) 

and the shipping density is 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
, |

/
, ; , ; 0 ; ,

o

o o o o o o o v o o v
T

t T p t v v p v dv T
∞

− −
θ γ γ θ τ

θ

μ θ γ = γ θ = μ − θ θ γ ∈ℜ∫  . (25)  

Note that Eqs. (24) and (25) are the same as Eqs. (22) and (23), except that | ( ; )o opγ θ γ θ  is replaced 
by | ( ; 0)o opγ θ γ θ =  and the lower limit of the integral in Eq. (24) depends on both ( , )′ ′λ φ  and the time 
interval duration T . This is not surprising since, by the definition of the route function on the virtual 
coordinates, the ships move at constant speed and the derivative of ( ; )o o oX θ γ  is unity. Also note that for 
the entry process, the rate function and the shipping density depend on the duration T  of the interval 
[ , ]o ot t T+ , as well as the initial time ot ; whereas, for the en route process, these parameters depend only 
on ot . 
 

Equations (24) and (25) determine the entry process. The mean number of the ships that depart in the 
interval ( , ]o ot t T+  with coordinates ( , ) ( )o o v vC Tθ γ ∈ ⊆ ℜ , ( , ; )o vM t T Cτ , is obtained by integrating the 
shipping density over the set ( )v vC T⊆ ℜ . The probability mass function on the number of these ships 

( , ; )e o vN t T C  is given by Eq. (9) with Mτ  replaced by ( , ; )e o vM t T C . The probability density on the 
parameters of these ships ( , , ; , )e o o op v t Tθ γ  is given by Eq. (11) with ( )kτμ τ  replaced by 

, , ( , , ; , )v o o ov t Tθ γμ θ γ  and ( , )oM t Tτ  replaced by ( , : )e o vM t T C . 
 

Finally, the Poisson process describing the total number of ships in the interval ( , )T oN t T  is the 
composition of the en route and the entry processes. Thus, for the closed interval[ , ]o ot t T+ , the total 
number of ships is ( , ) ( ) ( , )T o r o e oN t T N t N t T= + , the mean number of ships is 

( , ) ( ) ( , )T o r o e oM t T M t M t T= + , and the track-parameter probability density is 
, ,( , , ; , ) ( , , ; , ) / ( , )T o o o v o o o T op v t T v t T M t Tθ γθ γ = μ θ γ .  
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The route set assumptions for the deterministic model impose potentially important restrictions on the 
routes in the route set. In particular, the route set approximation can hold only if the routes have no 
common points and only if individual routes do not have multiple points (i.e., the routes cannot intersect 
one another and cannot cross over themselves). For those ships that simply transit from one port to 
another, the approximation that results from these restrictions may be adequate for those applications that 
are limited to port-to-port traffic and do not require precise descriptions of the tracks. There is, however, 
shipping traffic which does more than simply transit from one port to another (e.g., fishing vessels, 
recreational, and military). For applications where this traffic is important, the route set restrictions of the 
deterministic model may not be acceptable. 
 
5. A STOCHASTIC ROUTE FUNCTION MODEL 
 

In general, a stochastic description of the ensemble of routes requires the joint probability density on 
the coordinate positions 1 1{ ( , ), , ( , )}n nx xθ γ θ γK  for all possible samples of the distances traveled 

1{ ; 0}nx x n< < >K . In this section, we present a stochastic model based on the assumption that the route 
set probability law is Markov. We first specify the route set probability law, describe how the probability 
law is used to generate the ship tracks in terms of the track parameter ( , , )o o vθ γ , and conclude by 
presenting the rate function that specifies the Poisson probability law on the ship-track parameters.  
 
5.1 The Route Set Probability Law 

 
For a Markov process, the joint probability density is completely determined by the “first-order” 

probability density and the probability density transition function. The first-order probability density 

1( ), ( ) ( , ; )x xp xθ γ θ γ  describes the coordinates of all routes in the route set that have a fixed value of the 
distance traveled x. In general, this density depends on x (e.g., for small x the distribution of the ship 
coordinates is concentrated near the departure port); as x increases, the distribution of the coordinates 
migrates towards the destination port and become more diffuse. Note that at the departure port ( 0x = ) the 
nominal route coordinate θ  is zero, so that the first-order density has the form 

 

 (0), (0) ( , ; 0) ( ) ( )d dp x pθ γ γθ γ = = γ δ θ .  (26) 

 
In the following, we refer to dγ  and ( )d dpγ γ  as the departure cross-sectional coordinate and 

probability density, respectively.  
 

The transition probability density, denoted by ( ), ( ) ( ), ( ) ( , ; , , , )x x x xp x x′ ′θ γ θ γ ′ ′ ′θ γ θ γ , is the probability 

density on the coordinates at the distance x x′> , ( ( ), ( ))x xθ γ , given the values of the coordinates at the 
distance x, ( ( ) , ( ) )x x′ ′ ′ ′θ = θ γ = γ . The first-order density for the coordinates at x is determined from the 
first-order density of the coordinates at x′  by 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, ,, ; , ; , , , , ;x x x xx x x xp x p x x p x d d′ ′θ γ θ γ′ ′θ γ θ γ
′ ′θ γ

′ ′ ′ ′ ′ ′ ′ ′θ γ = θ γ θ γ θ γ θ γ∫ ∫ . (27)  

 
For the special case of 0x′ = , the transition density can be written as 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),, 0 , 0 , ; , , , 0 , ; , ,
dd dx xx xp x x p xθ γ γθ γ θ γ ′ ′ ′ ′ ′θ γ θ γ = γ = = θ γ θ γ δ θ  , (28) 
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where ( ), ( ) ( , ; , , )
d dx xp xθ γ γ ′θ γ θ γ  is referred to here as the departure transition probability density. 

Substituting from the last equation and Eq. (26) into Eq. (27) results in 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,, ; , ; ; .dd d d dx x x xp x p x p dγθ γ θ γ γ

′γ

θ γ = θ γ γ γ γ∫   (29) 

 
5.2 The Route Set Function 

 
As with the deterministic model, the route and the track functions are specified in terms of the track 

parameter ( , , )o o vθ γ . The set of real ship coordinates rℜ  and virtual ship coordinates ℜ v  have the same 
form as for the deterministic model, where the route envelopes are determined by the support of the first-
order probability densities. The definition of the route function is as follows. 
 

For the real ship coordinates, the route function is determined recursively in terms of the transition 
probability density. The process is as follows. At time ot , the initial coordinates are specified by the track 
parameter ( , , )o o vθ γ . After a time tδ , the ship has traveled a distance xδ  as determined by the ship-
motion function. The ship coordinates corresponding to this increment in the distance traveled are 
distributed according to ( ), ( ) ( ), ( ) ( , ; , , , )

o o o o o ox x x x x xp x x xθ +δ γ +δ θ γ ′ ′θ γ θ γ + δ . An application of a random 

number generator for this probability density yields specific values of the ship coordinates 
( ( ), ( ))o ox x x xθ + δ γ + δ . The process is repeated to yield the sequence of ship coordinates corresponding 
to the sequence of distances traveled determined from the sequence of time increments.  
 

For the virtual coordinates, we take dγ = γ  and xθ =  in analogy with the deterministic model. At the 
departure port ( 0x = θ = ), the ship coordinates are (0, )dγ , so that the recursive process described above 
is initiated with the transition density ( ), ( ) ( , ; ; )

d dx xp xθ γ γ θ γ γ . As such the cross-sectional coordinate dγ  

and the density ( )
d dpγ γ γ  correspond to the route parameter ω  and its density ( )pω ω . 

 
5.3 The Track Parameters 

 
The track parameter ( , , )o o vθ γ  is related to the track parameter ( , , ) ( , , )o d ox v x vγ = ω  by the first-

order probability density of Eq. (29). It follows from the probability law of Section 3 and the stochastic 
transformation property of Appendix A, that the track parameter is described by a Poisson process (see 
Appendix B). For the real ship coordinates, the rate function is given by 

 

 ( )
( )

( ) ( )
( ) ( ) ( ) ( )

0

, , , , ,
0 0

ˆ, , ; , , ; , ; ,
u

o o o d d
l

e L d

v o o o x v o d o o o o d o dx x
e

v t x v t p x dx d
γ

θ γ γ θ γ γμ θ γ = μ γ θ γ γ γ∫ ∫  ,  (30) 

 
where  

 ( ) ( )( ) ( )
, ,

, ; ;
ˆ , , ; , ; ;o d

o o d o
x v o d o o o o d o

o

x v t
x v t t x v t

xγ τ
∂ς γ

μ γ = μ − ς γ
∂

 . (31) 

 
For the virtual ship coordinates,  
 
 ( ) ( ) ( ) ( ) ( ) ( )1 1

, , , , ; , , , .o o dv o o o o v o o o o vv t T p p v v t v T− −
θ γ γ τμ θ γ = γ μ − θ θ γ ∈ℜ  (32) 
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Note that the rate function , ,ˆ ( , , ; )o dx v o d ox v tγμ γ  of Eq. (31) is the same as the first factor of Eq. (18) 

with ω  replaced by dγ  and Eq. (32) is the same as Eq. (24) with ( ; 0)o opγ θ γ θ =  replaced by ( )d opγ γ . 

The application of these equations to determine the shipping densities and the component probability laws 
is the same as that described in the preceding section. 
 
6. SUMMARY 
 

This report has presented two models that describe the tracks of all ships en route in a region during 
an arbitrary time interval [ , ]o ot t T+ . Each of the models consists of the composition of port-pair models 
for all pairs of ports, pseudo as well as real, that support shipping within the region. Each port-pair model 
consists of a track function that describes the tracks of all ships present during [ , ]o ot t T+  and a 
probability law on the number of ships present in the interval, the initial positions of those ships, and their 
nominal speeds.  
 

The probability law on the track parameters is obtained under the assumptions that the times at which 
the ships depart each port are distributed as a Poisson process with a time-varying departure rate and that 
the ship speeds and the routes that the ship travel are statistically independent. Under these assumptions, it 
is shown that the ship-track parameters are distributed as a space-time Poisson process with a time-
dependent rate function determined by the departure rate and the route coordinate density functions. This 
process can be viewed as the composition of two Poisson processes, the “en route process” that describes 
the ships that are en route at ot  and the “entry process” that describes the ships that depart during the 
interval ( , ]o ot t T+ . The en route process is defined on the set of real ship coordinates; the entry process 
is defined on a set of virtual ship coordinates. The rate function of the en route process determines a 
shipping density that represents the mean number of ships per unit area in the route set at time ot . A 
shipping distribution for the region is determined by integrating the shipping density over the resolution 
cells in a longitude-latitude grid. For both models, the rate function specifying the Poisson process 
depends on the port-departure rate function and the characteristic speed probability density. For the 
deterministic model, the rate function also depends on the route coordinate probability density. For the 
stochastic model, the rate function also depends on the transition probability density of the Markov 
process.  
 

For both models, the track function is determined from a route function and a ship-motion function. 
In the deterministic model, the route function is determined from the route coordinate probability 
densities in such a way that each route is uniquely determined from any point on that route. As a 
consequence, the model is limited to route sets where each route “progresses” from the departure port to 
the destination port without doubling back on itself and no two routes can cross one another. The route 
coordinate probability density can be estimated from any sample of ship coordinates, regardless of 
whether those coordinates are organized into specific routes.  
 

In the stochastic model, the ship tracks are obtained as realizations of the Markov process on the ship 
route coordinates. The process is recursive. Starting from an initial position, a distance traveled is 
determined from the motion function for a specific time increment; the ship coordinates are then 
determined from the initial ship coordinates and the distance traveled using the transition probability 
density of the Markov process. The process is repeated to determine new coordinates by replacing the 
initial ship coordinates with the current ship coordinates. In the stochastic model, there are no inherent 
constraints on the route crossings as in the deterministic model. Furthermore, ship location data used to 
estimate the Markov process transition probability density must necessarily be organized into routes.  
 

Ship location data that is not organized into routes cannot be used to estimate the Markov process. 
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Appendix A 
TRANSFORMATIONS OF POISSON PROCESSES 

 
 

In this Appendix, we define a multidimensional, nonhomogeneous, Poisson process and derive two 
transformation properties that are used in the development of the probability law on the track parameter. 
The first of these properties applies for deterministic, invertible transformations; the second applies for 
stochastic transformations. 
 
A1. THE POISSON PROCESS  

 
Points { }kz Z∈  are distributed as a Poisson process if, for any two disjoint subsets of Z , 1C  and 2C , 

the number of points in 1C  and 2C  are statistically independent Poisson random variables [ ]1zN C  and 

[ ]2zN C . The probability mass function for the number of points in a set C Z⊆  is given by 
 

 [ ]{ } [ ]{ } [ ]Pr exp
!

n
z

z z
M C

N C n M C
n

= = −  ,  (A1) 

 
where 
 
 [ ] ( )z z

C
M C z dz= μ∫  (A2) 

 
is the mean number of points in C  and ( )z zμ  is the rate function for the process. The Poisson process 
has the property that if there are n  points in the set C , then the positions of those points { }; 1, ,kz k n= K  
are independent, identically distributed random variables with common probability density, 
 
 
 [ ] ( ) ( ) [ ] 1

z k z k zz N C np z z M C −
= = μ  . (A3) 

 
Clearly, to specify a nonhomogeneous Poisson process, it suffices to specify its rate function. In the 

special case where the rate is independent of z , the Poisson process is said to be homogeneous. In this 
case, [ ] [ ]Volumez zM C C= μ ×  and [ ] ( ) [ ] 1Volume

z kz N C np z C −
= = . In the one-dimensional case, 

where Z  is the time axis and C  is a time interval, [ ],o oC t t T= + , Eqs. (A1), (A2), and (A3) take the 
form of Eqs. (10), (11), and (12) in the text. 
 

For later reference we note that the characteristic function of a Poisson process, 

[ ] ( ) [ ]{ }exp
z zN Cc u E iuN C⎡ ⎤= ⎣ ⎦ , is given by 

 
 [ ] ( ) [ ] { }( ){ }exp exp 1

z zN Cc u M C iu= −  (A4) 
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and that a stochastic process is a Poisson process if its characteristic function has the form of Eq. (4) in 
the text. 
 
A2. DETERMINISTIC TRANSFORMATION PROPERTY 

 
Let the points in the space Z  be distributed as a Poisson process with density function ( )z zμ  and let 

( );g z q  be an invertible transformation from Z  to a space Z ′  for each value of the parameter q . Denote 

the inverse of this transformation by ( )1 ;g z q− ′ . Then the transformation g  induces a Poisson process on 
Z ′  with a rate function given by 

 
 ( ) ( )( ) ( )1 ; ;z zz g z q J z q−

′ ′ ′ ′μ = μ  , (A5) 

 
where ( );J z q′  is the Jacobian of the transformation. 
 

The proof of the transformation property is as follows. Let B Z⊆  be any set and let 

( ){ }1; ; ,qA z z g z q z B Z− ′ ′= = ∈ ⊆  be the pre-image of B  under the transformation g . Let N ′  be the 

number of points in the set B . We show that B  is a Poisson random variable with mean 
 

 ( )z z
B

M z dz′ ′ ′ ′= μ∫  , (A6) 

 
Where ( )z z′ ′μ  is given by Eq. (5). It suffices to show that the characteristic function of N ′ , 

( ) { }expN zc u E iuN′ ′= ⎡ ⎤⎣ ⎦ , can be written in the form of Eq. (4) in the text. To this end, we note that N ′  
can be written in the form 
 

 ( )qA k
k

N I z′ = ∑  (A7) 

 
where  

( )
1 if

0 otherwiseq
q

A k
z A

I z
∈⎧⎪= ⎨

⎪⎩
 

 
is the indicator function of the set qA . Substituting from Eq. (A7) into the definition of the characteristic 
function yields 
 

 ( ) ( )exp .qN A k
k

c u E iu I z′
⎡ ⎤⎧ ⎫⎪ ⎪= ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∑  (A8) 
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Expanding the expected value operator in Eq. (A8) yields 
 

 ( ) ( ) { }1, , exp Pr ,qn zN A k zz z N n
n k

c u E iu I z N n′ =

⎡ ⎤⎧ ⎫⎪ ⎪= =⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

∑ ∑K  (A9) 

 
where { }Pr zN n=  is given by Eq. (A1). Since the points { }; 1, ,kz k n= K  are conditionally independent 
and identically distributed with the probability density of Eq. (A3), the expected value operator inside the 
summation of Eq. (A9) can be written as 

 

( ) ( ){ }

( ){ }
( ){ }

1 1

1

, , , ,
1

, ,
1

exp exp

exp

exp .

q qn z n z

qn z

qkn z

k n

A k A kz z N n z z N n
k k

k n

A kz z N n
k

n
A kz N n

E iu I z E iuI z

E iuI z

E iuI z

=

= =
=

=

=
=

=

⎡ ⎤ ⎡ ⎤⎧ ⎫⎪ ⎪ =⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∏

∏

K K

K - (A10) 

 
The expected value in the last equality on the right-hand side of Eq. (A10) can be written as 

 

 
( ){ } { } { } { }( )

{ } { }( )

exp Pr exp 1 Pr

Pr exp 1 1.

qkn z A k q z q zz N n

q z

E iuI z A N n iu A N n

A N n iu

=
⎡ ⎤ = = + − =⎢ ⎥⎣ ⎦

= = − +
 (A11) 

 
Substituting Eq. (A11) into the last equation in Eq. (A10) and the result into Eq. (A9) yields 

 

 
( ) { } { }( )( ) { }

{ } { } { }( )( ){ }

exp
Pr exp 1 1

!

exp exp Pr exp 1 1

nn
N q z

n

q z

M M
c u A N n iu

n

M A N n iu M

′
−

= = − +

= − = − +

∑
 

 
or, equivalently, 
 

 ( ) { } { }( ){ }exp Pr exp 1 ,N q zc u M A N n iu′ = = −  (A12) 

 
where M  is given by Eq. (A2) with A  identified with qA . Using Eq. (A3) to write 
 

 { } ( )Pr
q

z
q z

A

z
A N n dz

M
μ

= = ∫  (A13) 
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and substituting into the right-hand side of Eq. (A12) yields 
 

 ( ) ( ) { }( )exp exp 1 .
q

N z
A

c u z dz iu′

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟= μ −⎨ ⎬⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫  (A14) 

 
Equation (A14) indicates that N ′  is a Poisson process with mean 

  

 ( ) .
q

z z
A

M z dz′ = μ∫   (A15) 

Making the change of variables in the integral determined by the transformation g  yields 
 

 ( )( ) ( )1 ; ;z z
B

M g z q J z q dz−
′ ′ ′ ′= μ∫  , (A16) 

as was to be shown. 
 
A3. STOCHASTIC TRANSFORMATION PROPERTY 

 
Let the points in the space Z  be distributed as a Poisson process with density function ( )z zμ . 

Assume that given any sequence of points{ }; 1, ,kz Z k n∈ = K , there is a sequence of random variables 

{ }; 1, ,kz Z k n′ ′∈ = K  that are statistically independent and identically distributed with a common 
probability density ( );k kz zp z z′ ′ , i.e., 

 ( ) ( )1 1 1 1, , , ,
1

, , ; , , ;
n n

n

n n k kz zz z z z
k

p z z z z p z z′′ ′
=

′ ′ ′= ∏K K K K  . (A17) 

Then the points in the space Z ′  are distributed as a Poisson process with a density ( )z z′ ′μ  given by 

 ( ) ( ) ( );z zz z
Z

z p z z z dz′ ′′ ′μ = μ∫  . (A18) 

The proof of the transformation property is as follows. Let B Z ′⊆  be any set and let N ′  be the number 
of points in the set B . We show that N ′  is a Poisson random variable with mean 
 

 ( )z z
B

M z dz′ ′ ′ ′= μ∫ , (A19) 

where ( )z z′ ′μ  is given by Eq. (A18). It suffices to show that the characteristic function of N ′ , 

( ) { }expN zc u E iuN′ ′= ⎡ ⎤⎣ ⎦ , can be written in the form of Eq. (A4) with the mean given by Eqs. (A18) and 
(A19). To proceed, note that a point z′  is in the set B  if there is a point z Z∈  that maps into the point z′ . 
Thus, the random variable N ′  can be written in the form 
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 ( );Z B k k
k

N I z z×′ ′= ∑  , (A20) 

where 
  

( ) 1 if  and 
;

0 otherwiseZ B k k
z Z z B

I z z×
′∈ ∈⎧′ = ⎨

⎩
 

 
is the indicator function of the set Z B× . But Eq. (20) is of the same form as Eq. (A7) with ( )qA kI z  

replaced by ( );Z B k kI z z× ′ . Thus, proceeding in direct analogy to Eqs. (A8) through (A12), we obtain 
 

 ( ) { } { }( ){ }exp Pr exp 1N zc u M Z B N n iu′ = × = −  , (A21) 

where M  is given by Eq. (A2) with A  identified with Z . Now,  

{ } { } ( ) ( ) ( )Pr Pr ,
z z

z
z z z N n z N n

Z Z B

z
Z B N n B z Z N n p z dz p z dz dz

M= =

⎡ ⎤ μ
′⎢ ⎥× = = ∈ = =

⎢ ⎥⎣ ⎦
∫ ∫ ∫  , (A22) 

where we have used Eq. (A3) and the fact that 

 { } ( )Pr ,
zz z N n

B
B z Z N n p z dz= ′∈ = = ∫ . (A23) 

Substituting from Eq. (A22) into Eq. (A21), we obtain Eq. (A4) with ( )Z zμ  given by Eq. (A19), as 
was to be shown. 
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Appendix B 
DERIVATION OF THE TRACK-PARAMETER PROBABILITY LAWS 

 
 
 

In this Appendix, we derive the probability law on the track parameter ( ), ,o o vθ γ  for both the 
deterministic and the stochastic models. The probability law on the track parameter ( ), ,o o vλ φ  is 
determined from the probability law on the track parameter ( ), ,o o vθ γ  and the invertible transformation 
relating these parameters. To obtain these results, we first derive the probability law on the parameter 
( ), ,ox vω  and then use the transformation properties of Appendix A. Note that it suffices to present these 
derivations for the single port-pair model since the shipping between different port-pairs is assumed to be 
statistically independent. We conclude this Appendix with the formal definition of the shipping 
distribution. 
 
B1. THE TRACK-PARAMETER PROBABILITY LAW FOR ( ), ,ox vω   
 

The probability law on the track parameter ( ), ,ox vω  is determined from the probability law on the 
track parameter ( ), ,vτ ω  and the transformation defined in the text. To derive this probability law, we 

first show that the points ( ){ }, ,vτ ω  are Poisson distributed and then use the transformation property of 

Eq. (A5) in Appendix A to show that the points ( ){ }, ,ox vω  are Poisson distributed and to obtain an 
expression for their rate function. 
 

To this end, let Z  be the set of points ( ) ( ) [ ]{ }, , ; , , 0,1 , 0z v v= τ ω τ∈ −∞ ∞ ω∈ > . By assumption, the 

route parameters { }kω  and the ship speeds { }kv  are statistically independent and identically distributed 
and the departure times { }kτ  are distributed as a Poisson process with rate function ( )tτμ . Consequently, 
the points z Z∈  are distributed as a Poisson process with rate function  

 ( ) ( ) ( ) ( )z vz p p vτ ωμ = μ τ ω . (B1) 

Next, define the space Z ′  to be the sets of points ( ){ }, ,oz x v′ = ω . The probability law on Z ′  is 

obtained from the transformation property with the transformation ( ),g z q  of Eq. (A5) determined from 
Eqs. (6) and (7) in the text and the identity mappings on ω and v . Specifically, ( ),g z q  is determined by 

 ( ); ,o x ox M t v= − τ ω  ,  (B2) 

where the initial time ot  in Eq. (B2) is the parameter q  of the transformation ( ),g q⋅ . The inverse 

transformation ( )1 ,g z q− ′  is determined by 

 ( ), , ;o o o ot x v tτ = − ς ω  (B3) 
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The Jacobian of the transformation is 

 ( ) ( ), , ;
, , ; o o o

o o
o

x v t
J x v t

x
∂ς ω

ω =
∂

 . 

Applying the transformation property, we conclude that the points ( ){ }, ,oz x v Z′ ′= ω ∈  are Poisson 
distributed with rate function given by 

 ( ) ( ) ( ) ( ), , , ,ˆ, , ; , , , ; ,o ox v o o x v o o vx v t T x v t T p p vω ω ωμ ω = μ ω ω  , (B4) 

where 

 ( )
( )( ) ( ) ( )

( )
, ,

1 1

, , ;
, , ; , for 0

ˆ , , ; ,

for 0
o

o o o
o o o o o

ox v o o

o o o

x v t
t x v t x L

xx v t T

t x v v vT x

τ
ω

− −
τ

⎧ ∂ς ω
μ − ς ω < < ω⎪⎪ ∂μ ω = ⎨

⎪μ − − < <⎪⎩

  (B5) 

 
B2. THE TRACK PARAMETER PROBABILITY LAW: DETERMINISTIC MODEL  
 

The probability law on the track parameter ( ), ,o o vθ γ  is determined from the probability law on the 
track parameter ( ), ,ox vω  and the transformations defined in the text. To derive this probability law, 

define the spaces Z ′  and Z ′′  to be the sets of points ( ){ }, ,oz x v′ = ω  and ( ){ }, ,o oz v′′ = θ γ , respectively. 
The transformation from Z ′  to Z ′′  is obtained from Eqs. (4) and (15) in the text with x  replaced by ox ; 

 
( )

( )( )1

,

; ,
o o

o o

x

P x−
γ θ

θ = Θ ω

γ = ω Θ ω
 . (B6) 

The inverse transformation is given by Eqs. (16) and (17) in the text: 

 
( )

( ) ( ) ( );

;

, ,
o o

o o

o o o o o P

P

x X X
γ θ

γ θ

ω= γ θ

ω = γ θ

= θ γ = θ ω
 . (B7) 

The Jacobian of the transformation is 

 ( )

( ) ( )

( ) ( )

, ,

, , ;
; ;

o o o o o o

o o
o o

o o o o

o o

X X

J x v t
P Pγ θ γ θ

∂ θ γ ∂ θ γ
∂θ ∂γ

ω =
∂ γ θ ∂ γ θ

∂θ ∂γ

 . 

 
To evaluate the Jacobian, we expand the determinant and then use the chain rule to evaluate the 

partial derivatives of ( ),o o oX θ γ , where ω  is given by Eq. (13) in the text. Finally, we use Eq. (B7) to 
obtain  

 ( ) ( ) ( ),
, , ; ; o o o

o o o o
o

X
J x v t p

∂ θ γ
ω = γ θ

∂θ
 . (B8) 
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It follows from the transformation property of Appendix A, Eqs. (B4) and (B5), and the fact that ω  is 
uniformly distributed, that the points ( ){ }, ,o oz v Z′′ ′′= θ γ ∈  are Poisson distributed with the rate function 
given by Eq. (18) in the text. Furthermore, since the points z′′  are distributed as a Poisson process, the 
initial ship positions ( ),o oθ γ  are distributed as a Poisson process with rate function given by Eq. (19). 
Equation (20) in the text follows from the general equation for the mean number of points in a set (Eq. 
(A1) in Appendix A) with the rate function given by Eq. (19) in the text. Eq. (21) in the text follows from 
Eq. (A3) in Appendix A. 
 

To obtain the probability law for the virtual ship coordinates, we note that (a) these ships travel with 
constant speed motion; (b) ( ),o o o oX θ γ = θ , and ( ) ( ); ; 0o o o op pγ θ = γ θ = ; and (c) the condition 

( ),o ot t Tτ∈ +  is equivalent to the condition [ ),0o ox vT= θ ∈ − . The results follow using the same logic 
as that used to obtain the probability law on the real ship coordinates. 
 
B3. THE TRACK-PARAMETER PROBABILITY LAW: STOCHASTIC MODEL 
 

The probability law for the stochastic model is determined from the probability law on ( ), ,ox vω  and 
the stochastic transformation property of Eq. (A18). This follows from the fact that the track parameter 
for the stochastic model is just ( ), ,ox vω  with ω  replaced by odγ . Thus, ( ), ,o dx vγ  is Poisson-

distributed with rate function given by Eqs. (B4) and (B5) with ω  replaced by odγ  and ( )pω ω  replaced 

by ( )d opγ γ . To apply the Stochastic Transformation property, note that the probability density in Eq. 

(A18) is the transition probability density of Eq. (29) in the text. Substitution into Eq. (A18) completes 
the derivation.  
 
B4. THE SHIPPING DISTRIBUTION FUNCTION  
 

The shipping distribution represents the mean number of ships in each resolution cell determined by a 
rectangular grid defined in the ( ),λ φ  coordinate system. The formal definition of this function is as 

follows. Let ( ){ },i jΨ = λ φ  be the rectangular grid of points determined by ( )1 ; 1,...,i c i i Iλ = λ + Δλ − =  

and ( )1 ; 1,...,j c j i Jsφ = φ + Δφ − = , where Δλ  and Δφ  are the longitude and latitude spacings, 
respectively, and cλ  and cφ  are the coordinates of the southwest corner of the region. Further, let 

 ( ), , ,
2 2 2 2i j i i j jC Δλ Δλ Δφ Δφ⎡ ⎤ ⎡ ⎤λ φ = λ − λ + × φ − φ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (B9) 

be the resolution cell corresponding to the point ( ),i jλ φ  and let ( ),i jC′ λ φ  be the pre-image of that 

resolution cell in the auxiliary coordinates obtained under the transformation between the longitude-
latitude and the auxiliary coordinates. Finally, let ( ), ,n m i jD λ φ  be the shipping distribution for the single 

port pair ( ), ,n m i jP λ φ . Then it follows from Eq. (B11) that ( ), ,n m i jD λ φ  is given by 

 ( ) ( )( ), , ; ,,
, , ;

i j
n m i j n m o o o o oC

D t d dθ γ′ λ φ
λ φ = μ θ γ θ γ∫  . (B10) 

 
The shipping distribution for the total region follows from the fact that an aggregate of independent 

Poisson processes is itself a Poisson process with a rate function and shipping density given by the sum of 
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the rate functions and the shipping densities of the component processes. Thus, the shipping density for 
the region is given by 

 ( ) ( ), , ; ,
, 1

, ; , ;
PN

o o o n m o o o
n m

t tθ γ θ γ
=

μ θ γ = μ θ γ∑ , (B11) 

and, hence, the shipping distribution for the region is given by 

 ( ) ( ),
, 1

, , .
PN

i j n m i j
n m

D D
=

λ φ = λ φ∑  (B12) 
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Appendix C 
A SIMPLIFIED DETERMINISTIC MODEL 

 
 

As seen in the text, the probability law on the track parameter for the deterministic model is 
considerably simplified by assuming constant speed motion and by approximating ox∂ ∂θ  by unity. In 
this Appendix, we describe further simplifications in the model obtained by making four additional 
assumptions. The first states that the departure rate is independent of time (i.e., ( )tτ τμ = μ ). This 
assumption is often necessitated by practical considerations, since the available departure-time data may 
be sufficient to estimate the time-averaged departure rate but not its time dependence. The second 
assumption states that the route coordinate probability density ( );pγ θ γ θ  has the same form for all cuts in 

the route set. This assumption results in a simplified track function. The third assumption provides a 
simple approximation for the shipping distribution and the track-parameter probability density for a 
sufficiently fine grid resolution grid. Finally, the fourth assumption states that the route set itself can be 
approximated as a sequence of simple route sets, where the nominal route for each is a segment of a great 
circle arc. This assumption results in simple expressions for the transformation between the auxiliary 
coordinates and the longitude-latitude coordinates. 
 
C1. CONSTANT DEPARTURE-RATE PROBABILITY LAW  
 

The simplified track-parameter probability law for the real ship coordinates is obtained by 
substituting τμ  for the time-dependent departure rate in the expressions for the track-parameter rate 
function and the shipping density (Eqs. (22) and (23) in the text) and then substituting the results into the 
expression for the mean (Eq. (20 in the text)) and the track-parameter probability density (Eq. (21} in the 
text)). The shipping density becomes 

 ( ) ( ), , ;o o o opθ γ τγ θμ θ γ = γ θ μ β  , (C1) 

where 

 ( )1

0
vv p v dv

∞
−β = ∫  (C2) 

is the mean reciprocal ship speed. Furthermore, the mean number of ships with initial positions in a set 
[ ] [ ]1 2 1 2, ,rC = θ θ × γ γ  becomes 

 ( ) ( ) ( )
2

1

2 1; ;r rM C P P d
θ

τ γ θ γ θ
θ

⎡ ⎤= μ β γ θ − γ θ θ⎣ ⎦∫  . (C3) 

Note that the mean of all ships that are en route at time ot  is simply ( )r rM Lτℜ = μ β . Finally, the track-
parameter probability density becomes 

 ( ) ( ) ( )ˆ, , ; ;e o o r v o op v C p v p Lγ θθ γ = γ θ  , (C4) 
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where 

 ( ) ( ) ( )1ˆv vp v v p v
−

= β  . (C5) 

According to this probability density, the oθ  coordinate is uniformly distributed on the interval [ ]0, L  
and, given oθ , the oγ  coordinate has the probability density ( );o opγ θ γ θ . The ship speed has the 

probability density ( )ˆvp v  and is statistically independent of the ship positions. 
 

For the virtual ship coordinates, there is no appreciable simplification in the shipping density other 
than that obtained by replacing ( )1

o ot v−
τμ − θ  by τμ  in Eqs. (24) and (25) in the text. However, for sets 

of the form [ ] [ ]1 2,0 ,vC = −∞ × γ γ , the mean number of ships simplifies to1 

 ( ) ( ) ( )2 1; ; 0 ; 0e v o oM T C T P Pτ γ θ γ θ
⎡ ⎤= μ γ θ = − γ θ =⎣ ⎦  . (C6) 

Note that the mean number of all ships that depart in the interval is simply ( );e vM T Tτℜ = μ , as 
expected since, by assumption, the departure times are Poisson distributed with rate τμ . Finally, the 
track-parameter probability density for the ships that depart in the interval ( ],o ot t T+  becomes 

 ( ) ( ) ( ) ( ) [ ]1 ; 0 for ,0
, , ;

0 otherwise
v o o o

d o o o
Tv p v p L Tv

p v t
−

γ θ
⎧ γ θ = θ ∈ −⎪θ γ = ⎨
⎪⎩

 . (C7) 

According to this probability density, the oγ  coordinate has the probability density ( ); 0o opγ θ γ θ =  

and is independent of both the oθ  coordinate and the ship speed. The oθ  coordinate and the ship speed 
are statistically independent with the oθ  coordinate uniformly distributed on the interval [ ),0vT− . The 
ship speed has the density ( )vp v , rather than ( )ˆvp v .  
 

Equations (C3) through (C7) specify the track-parameter probability law in the simplified model. For 
those ships en route at time ot , the probability that there are n  ships is given by Eq. (10) in the text using 
the mean of Eq. (C3) and the track parameters for those ships are independent and identically distributed 
with the common probability density of Eq. (C4). For those ships that depart during the interval 
( ],o ot t T+ , the probability that there are n  ships is also given by Eq. (10) using the mean of Eq. (C6), 
and the track parameters for those ships are independent and identically distributed with the common 
probability density of Eq. (C7). 
 

Specific ship track realizations can be obtained using the track function with specific realization of 
the track parameter obtained from the probability law of Eqs. (C3) through (C6). In particular, for those 
ships en route at time ot , a Poisson random number generator can be used to determine an integer n  that 
represents the number of ships en route at time ot . Then, for each of these n  ships, random number 
generators for the three probability densities of (C4) can be used to determine the corresponding track 
parameters. A similar procedure can be used for the ships that depart in the interval ( ],o ot t T+ . An 
alternate procedure for generating track-parameter realizations is obtained under the fine resolution 
assumption described below. 

                                                      
1 The integral in the expression for the mean is evaluated by interchanging the order of integration. 
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Finally, the shipping density of Eq. (C1) determines the shipping distribution for the longitude-
latitude grid of interest. For fine-resolution grids, where the cell size is small with respect to the variation 
in the shipping density, the shipping distribution is approximately given by Eq. (C18). 

 
 
C2. THE INVARIANT ROUTE COORDINATE PROBABILITY DENSITY 

 
The invariant route coordinate density assumption states that ( );o opγ θ γ θ  has the same form for all 

values of oθ . This is equivalent to the assumption that there is a “normalized” cross-sectional variable γ̂  
and a probability density ( )ˆop γ , such that, for each oθ , the probability density ( );o opγ θ γ θ  is 

determined from ( )ˆop γ  by the transformation 

 ( ) ( ) [ ]ˆ ˆ; for 1,1o a oe eγ = Δ θ γ + θ γ ∈ −  , (C8) 

where 

 ( ) ( )( ) ( ) ( )( )2; 2u o l o a u o l oe e e e e eΔ = θ − θ = θ + θ  . (C9) 

Under this assumption, the components of the track function are given by2 

 
( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( )( )1

; ; ;

; ; ;

o o o o o o

o o o o a o o o a o

G t t v t t v t t

G t t v e e e t t e t t

θ
−

γ

− θ γ = θ − = − + θ

⎡ ⎤− θ γ = γ − θ θ Δ θ − + θ −⎢ ⎥⎣ ⎦
 . (C10) 

Note that this track function is independent of the form of the route coordinate density function. 
 

To establish Eq. (C10), we note that it follows from the transformation of Eq. (C8) that the route set 
density and the route set distribution function are given by 

 
( ) ( )

( ) ( )

( ) ( )
( )

1;

,

;

a
o o a

a

a
o o

a

e
p p e

e

e
P P

e

−
γ θ

γ θ

⎛ ⎞γ − θ
γ θ = Δ θ⎜ ⎟⎜ ⎟Δ θ⎝ ⎠

⎛ ⎞γ − θ
γ θ = ⎜ ⎟⎜ ⎟Δ θ⎝ ⎠

 (C11) 

where ( )ˆop γ  and ( )ˆoP γ  are the probability density and the distribution function for the normalized 
cross-sectional variable, respectively. Furthermore, it follows from the second equation of Eq. (C11) and 
the definition of the cross-sectional route function in the text that, for each route ω , we must have 

 ( )( ) ( ) ( )1
a oe e P −⎡ ⎤γ − θ Δ θ = ω⎣ ⎦  , (C12) 

where 1
oP −  is the inverse of the distribution function oP . Now, Eq. (C12) must hold for all points on the 

route, including the initial point ( ),o oθ γ . Thus, we also have 

 ( )( ) ( ) ( )1
a o o oe e P −⎡ ⎤γ − θ Δ θ = ω⎣ ⎦  . (C13) 

Comparing these last two equations yields 

                                                      
2 To obtain this result, it is necessary to identify x  withθ . Although this follows from the assumption that 
∂X ∂θo = 1, it is clearly an approximation for any nondegenerate route set. 
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 ( )( ) ( ) ( )( ) ( )o a o o ae e e eγ = γ − θ Δ θ Δ θ + θ . (C14) 

 
To obtain the track function, we identify x  with θ  and use the assumption of constant speed motion 

to write 

 ( ) ( )o o ot t v t tθ − = − + θ  . (C15) 

Equation (C10) follows immediately from Eqs. (C14) and (C15). 
 
We conclude this subsection by noting that the track function of Eq. (C10) can be further simplified 

by taking the lower route envelope to be the negative of the upper route envelope, i.e., 
( ) ( ) ( )l ue e eθ = − θ = − θ . For this case, ( ) 0ae θ =  and ( ) ( )e eΔ θ = θ  so that γ  component of the track 

function of Eq. (C10) becomes 

 ( ) ( ) ( )( ); ; ;o o o o o oG t t v e e t tγ ⎡ ⎤− θ γ = γ = γ θ Δ θ −⎣ ⎦ . (C16) 

 
A particularly useful choice for the normalized probability density ( )ˆop γ  is the beta density 

modified to span the interval −1,1[ ] , i.e.,  

 ( ) ( )
( ) ( )

1 1ˆ ˆ1 1ˆ
2 2 2op

α− β−Γ α + β + γ − γ⎛ ⎞ ⎛ ⎞γ = ⎜ ⎟ ⎜ ⎟Γ α Γ β ⎝ ⎠ ⎝ ⎠
 . (C17) 

The route coordinate probability density used for the San Diego ship track example in Ref. 5 is the 
Beta density for 2α = β = . The route envelope ( )e θ  was taken to be a segment of a sinusoid with an 
amplitude that depends on the length of the route [6]. 
 
C3. THE FINE RESOLUTION ASSUMPTION 
 

We assume that the resolution cells ( ),i jC λ φ  in the grid Ψ  are sufficiently small that the shipping 

density is approximately constant over each resolution cell and equal to its value in the center of the 
resolution cell. Under this assumption, the port-pair shipping distribution is approximately given by 

 ( ) ( ) ( )( ) ( ),, , , ,i j i j i j jD Aθ γλ φ = μ Θ λ φ Γ λ φ φ  , (C18) 

where ( )jA φ  is the area of the resolution cell ( ),i jC λ φ  and ( ),i jΘ λ φ  and ( ),i jΓ λ φ  are the 

coordinate functions in the mapping from the latitude-longitude coordinates to the auxiliary coordinates. 
Substituting for the shipping density from Eq. (C1) into Eq. (C18) yields 

 ( ) ( ) ( )( ) ( ), , ; ,i j i j i j jD p Aτ γ θλ φ = μ β Γ λ φ Θ λ φ φ  . (C19) 

For small resolution cells, ( )jA φ  is approximately given by 

 ( ) ( )2 cosj e jA Rφ = φ ΔλΔφ  (C20) 

where eR  is the radius of the Earth. 
 

To obtain an alternate means of generating the ship-track parameters, we derive the probability 
density on the track parameter given that the ship is in the resolution cell. This probability density is given 
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by the rate function divided by the mean number of ships in the cell. Under the fine resolution 
assumption, the mean ( );r oM t C  is given by Eq. (C18) and the rate function is constant in the resolution 

cell with the value determined by replacing oθ  and oγ  by ( ),i jΘ λ φ  and ( ),i jΓ λ φ , respectively. Thus, 

we have 

 ( ) ( ) ( )( )
( ) ( )( ) ( )

, ,

,

, , , ,
, , ;

, , ,

v i j i j
e i j

i j i j j

v
p v C

A

λ φ

λ φ

μ Θ λ φ Γ λ φ
λ φ =

μ Θ λ φ Γ λ φ φ
 . (C21) 

 
For the simplified model shipping density of Eq. (C1), this probability density becomes 

 ( ) ( )
( )

ˆ
, , ; v

e i j
j

p v
p v C

A
λ φ =

φ
 , (C22) 

where ( )ˆvp v  is given by Eq. (C5).  
 

According to Eq. (C22), given that a ship is in the resolution cell, its position in that cell is uniformly 
distributed and its speed is independent of its position and has the probability density ( )ˆvp v . Thus, under 
the fine resolution approximation, the ship track realizations can also be generated by first using a Poisson 
random number generator with the mean given by Eq. (C6) to determine the number of ships in the 
resolution cell and then using uniform random number generators for the probability densities of Eq. 
(C22) to generate the track parameters. 
 
C4. COMPOUND ROUTE APPROXIMATION 
 

The transformation between the auxiliary coordinates and the longitude-latitude coordinates has a 
particularly simple form in the special case where the nominal route is the great circle arc connecting the 
departure port with the destination port. However, for many port-pairs, it is not possible to choose the 
nominal route to be a great circle arc since the routes must bend to avoid land masses. For these port-
pairs, the nominal route can be approximated as a sequence of great circle arcs connected at their 
endpoints (see Fig. C1). For each of these great circle arcs, the routes can be described in the auxiliary 
coordinates using a route function defined for the great circle arc and the simple coordinate 
transformation can be used to map those routes to the longitude-latitude coordinates. These “simple” 
route sets can then be joined together to form the complete route set between the departure port with the 
destination port. A method for connecting simple route sets to form a “compound route set” is described 
in Springer et al.3 along with the coordinate transformations for the great circle nominal routes.  
 
 

 

                                                      
3 P. Scrimger, R. Heitmeyer, and P. Boulon, “A Computer Model of Merchant Shipping in the Mediterranean Sea,” 
SACLANT Undersea Research Center Report, SR-164, La Spezia, Italy, SACLANT Undersea Research Center, 
1990. 
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Fig. C1 — An example of a compound route set formed from two simple route sets 
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